Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 87(11): 11D304, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910389

RESUMO

Wendelstein 7-X, a superconducting optimized stellarator built in Greifswald/Germany, started its first plasmas with the last closed flux surface (LCFS) defined by 5 uncooled graphite limiters in December 2015. At the end of the 10 weeks long experimental campaign (OP1.1) more than 20 independent diagnostic systems were in operation, allowing detailed studies of many interesting plasma phenomena. For example, fast neutral gas manometers supported by video cameras (including one fast-frame camera with frame rates of tens of kHz) as well as visible cameras with different interference filters, with field of views covering all ten half-modules of the stellarator, discovered a MARFE-like radiation zone on the inboard side of machine module 4. This structure is presumably triggered by an inadvertent plasma-wall interaction in module 4 resulting in a high impurity influx that terminates some discharges by radiation cooling. The main plasma parameters achieved in OP1.1 exceeded predicted values in discharges of a length reaching 6 s. Although OP1.1 is characterized by short pulses, many of the diagnostics are already designed for quasi-steady state operation of 30 min discharges heated at 10 MW of ECRH. An overview of diagnostic performance for OP1.1 is given, including some highlights from the physics campaigns.

2.
Rev Sci Instrum ; 87(8): 083505, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27587121

RESUMO

Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m(2) per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m(2) per MW injected beam power is measured.

3.
Rev Sci Instrum ; 81(10): 10E134, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033996

RESUMO

A bolometric diagnostic system with features necessary for steady-state operation in the superconducting stellarator W7-X was designed. During a pulse length of 1800 s with an ECRH (electron cyclotron resonance heating) power of 10 MW, the components suffer not only from a large thermal load but also from stray radiation of the nonabsorbed isotropic microwaves. This paper gives an overview of the technical problems encountered during the design work and the solutions to individual problems to meet the special requirements in W7-X, e.g., component thermal protection, detector offset thermal drift suppression, as well as a microwave shielding technique.

4.
Rev Sci Instrum ; 79(10): 10F337, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044644

RESUMO

The stellarator Wendelstein 7-X will allow for quasicontinuous operation with the duration only being limited to two 30 min discharges per day, at a continuous heating power of 10 MW electron cyclotron resonance heating (ECRH) at 140 GHz, by the capacity of the cooling water reservoir. This will result in high thermal loads on all plasma facing components of 50-100 kW/m(2) from radiation alone and of up to about 500 kW/m(2) on components additionally exposed to convective loads. In high density scenarios toroidally varying ECRH stray radiation levels of 50-200 kW/m(2) need to be coped with, requiring careful material selection and different shielding and hardening techniques. Furthermore, a gradual buildup of coatings on plasma facing optical components, which without any measures being taken, would lead to high transmission losses already within a few days of long pulse operation (equivalent to about 1 year of operation in pulsed devices like JET or ASDEX-upgrade) and therefore needs to be prevented as much as possible. In addition in situ cleaning as well as absolute calibration techniques need to be developed for all plasma facing optical systems. Here we report about some of our efforts to find, for various types of diagnostics, ways to cope with these adverse effects. Moreover, we give a few examples for individual diagnostic specific issues with respect to quasicontinuous operation, such as the development of a special integrator for the magnetic diagnostics as well as special interferometer types which can cope with unavoidable vibrations and slow path length changes due to, e.g., thermal expansion of the plasma vessel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...